Iteration

Lecture 8 - A
Object-Oriented Programming

Agenda

While Loop

Infinite Loops

Block Statements in Loops
While Loop for Input Validation
Do-while Loop

For Loop

Sentinel Values

Nested Loops

Break Statement

Continue Statement

Deciding Which Loops to Use
Boolean Flags

Empty Intervals

Common Loop Errors

Recursion vs. Iteration

Lecture 8 - A Object-Oriented Programming

10/22/2008

while Loop

Java provides three different looping structures.
The while loop has the form:

while (condition) {
statements;

}

While the condition is true, the statements will
execute repeatedly.

The while loop is a pretest loop, which means that
it will test the value of the condition prior to
executing the loop.

Lecture 8 - A Object-Oriented Programming 3

while Loop

Care must be taken to set the condition to
false somewhere in the loop so the loop will
end.

Loops that do not end are called infinite
loops.

A while loop executes 0 or more times since
if the condition is false, the loop will not
execute.

Lecture 8 - A Object-Oriented Programming 4

10/22/2008

10/22/2008

while loop Flowchart

o—

false

Lecture 8 - A Object-Oriented Programming 5

Infinite Loops

In order for a while loop to end, the condition
must become false.

int x = 20;

while(x > 0){
System.out.println(“x is greater than 07);

}

The variable x never gets decremented so it will
always be greater than O.

Lecture 8 - A Object-Oriented Programming 6

Infinite Loops

In order for a while loop to end, the condition
must become false.

int x = 20;

while(x > 0) {
System.out.println(“x is greater than 07);
x==;

}

The variable x never gets decremented so it will
always be greater than 0.

* Adding the x—- above fixes the problem.

Lecture 8 - A Object-Oriented Programming

Block Statements in Loops

* Although not required for single statement while
loops, convention holds that while loops always
use curly braces.

* Curly braces are required to enclose block
statement while loops. (like block if statements)

while (condition) {
single or block statements;

}

Lecture 8 - A Object-Oriented Programming

10/22/2008

while Loop for Input
Validation

 Input validation is the process of ensuring that

user input is valid.
System.out.print ("Enter a number in the "
+ "range of 1 through 100: ");
number = Keyboard.readInt();
// Validate the input.
while (number < 1 || number > 100)
{
System.out.println("That number is invalid.");
System.out.print ("Enter a number in the "
+ "range of 1 through 100: ");
number = Keyboard.readInt();
}

Lecture 8 - A Object-Oriented Programming 9

The do—while Loop

* The do-while loop is a post-test loop, which
means it will execute the loop prior to
testing the condition.

* The do-while loop, more commonly called a
do loop, takes the form:
do{
statements
}while (condition);

Lecture 8 - A Object-Oriented Programming 10

10/22/2008

do-while Loop Flowchart

'l

false

Lecture 8 - A Objedt-Oriented Programming 11

for Loop

* The for loop is a specialized form of the while loop,
meaning it is a pre-test loop.

* The for loop allows the programmer to initialize a
control variable, test a condition, and modify the
control variable all in one line of code.

* The for loop takes the form:

for (initialization; test; update)

{

loop statements;

}

Lecture 8 - A Object-Oriented Programming 12

10/22/2008

for Loop Flowchart
true
‘# [sutemeny | —
false

Sections of The for Loop

* The initialization section of the for loop
allows the loop to initialize its own control
variable.

* The test section of the for statement acts in
the same manner as the condition section of
a while loop.

* The update section of the for loop is the last
thing to execute at the end of each loop.

Lecture 8 - A Object-Oriented Programming 14

10/22/2008

for Loop Initialization

The initialization section of a for loop is optional;
however, it is usually provided.

Typically, for loops initialize a counting variable
that will be tested by the test section of the loop
and updated by the update section.

The initialization section can initialize multiple
variables.

Variables declared in this section have scope only
for the for loop.

Lecture 8 - A Object-Oriented Programming 15

Update Expression

The update expression is usually used to
increment or decrement the counting variable(s)
declared in the initialization section of the for
loop.

The update section of the loop executes last in the
loop.

The update section may update multiple variables.

Each variable updated is executed as if it were on
a line by itself.

Lecture 8 - A Object-Oriented Programming 16

10/22/2008

Modifying The Control Variable

* [t is bad programming style to update the
control variable of a for loop within the
body of the loop.

* The update section should be used to update
the control variable.
» Updating the control variable in the for loop

body leads to hard to maintain code and
difficult debugging.

Lecture 8 - A Object-Oriented Programming 17

Multiple Initializations and
Updates

* The for loop may initialize and update
multiple variables.

for(int 1 = 5, int j = 0; i < 10 || j < 20; i++, j+=2){
loop statements;

}

* Note that the only parts of a for loop that
are mandatory are the semicolons.

for(;;){
loop statements;

}//infinite loop.

e [f left out, the test section defaults to true.
Lecture 8 - A Object-Oriented P 1

rogramming

10/22/2008

Sentinel Values

Sometimes (usually) the end point of input data is
not known.

A sentinel value can be used to notify the program
to stop acquiring input.

If it is a user input, the user could be prompted to
input data that is not normally in the input data
range (i.e. —1 where normal input would be
positive.)

Programs that get file input typically use the end-
of-file marker to stop acquiring input data.

Lecture 8 - A Object-Oriented Programming 19

Nested Loops

Like if statements, loops can be nested.

If a loop is nested, the inner loop will execute all
of its iterations for each time the outer loop
executes once.

for(int i = 0; i < 10; i++)
for(int j = 0; j < 10; j++)
loop statements;

The loop statements in this example will execute
100 times.

Lecture 8 - A Object-Oriented Programming 20

10/22/2008

10

break Statement

e The break statement can be used to
abnormally terminate a loop.

* The use of the break statement in loops
bypasses the normal mechanisms and makes
the code hard to read and maintain.

e [t is considered bad form to use the break
statement 1n this manner.

Lecture 8 - A Object-Oriented Programming 21

continue Statement

* The continue statement will cause the
currently executing iteration of a loop to
terminate and the next iteration will begin.

* The continue statement will cause the
evaluation of the condition in while and for
loops.

e Like the break statement, the continue

statement should be avoided because it
makes the code hard to read and debug.

Lecture 8 - A Object-Oriented Programming 22

10/22/2008

11

10/22/2008

Deciding Which Loops to Use

* The while loop:
— Pretest loop

— Use it where you do not want the statements to execute
if the condition is false in the beginning.

* The do-while loop:

— Post-test loop

— Use it where you want the statements to execute at least
one time.

* The for loop:
— Pretest loop

— Use it where there is some type of counting variable
that can be evaluated.

Lecture 8 - A Object-Oriented Programming 23

boolean Flags

e A boolean flag is a boolean variable that denotes a condition (e.g., done,
working,available)
— setin one place, tested in another

¢ Boolean flags can also be used as the loop condition

* Example (implementing a for loop, using while):

boolean done = false;
int i = 0;
while (!done) {

i++;

if (i == 5)

done = true;

}

* Notice that boolean flag is set within loop
— in previous slides all checking was done through delegation, here we do it ourselves

Lecture 8 - A Object-Oriented Programming 24

12

Empty Intervals

public int sum() {
int temp_sum = 0;
for (int i = 1; i < 1; i++)
temp_sum += i;

return temp_sum;

}

* Answer: Body of loop is not executed

* Why?

— boolean is false for initial value of counter

Lecture 8 - A Object-Oriented Programming

25

Empty Intervals

» Correct example:

/* This method sums all numbers from 1 up to
and including the number specified */

public int sum(int number) {
int temp_sum = O0;
for (int i = 1; i <= number; i++)
temp_sum += i;

return temp_sum;

}

Lecture 8 - A Object-Oriented Programming

26

10/22/2008

13

Off by One Errors

e Occur when loop executes one too many or one
too few times

e Example: Add even integers from 2 to number,
inclusive

count = 2;

result = 0;

while (count < number) ({
result += count;
count += 2;

}

Lecture 8 - A Object-Oriented Programming

27

Off by One Errors

* Produces incorrect result if number is assigned
an even value. Values from 2 to number-2 will
be added (i.e., number excluded)

e Should be:

while (count <= number) {

}
* Now, value of number is included in summation

Lecture 8 - A Object-Oriented Programming

28

10/22/2008

14

Other Loop Errors

* Make sure test variables have proper values before loop is
entered

product = 0;
do {
product *= 2;
} while (product < 100);

/* what will happen here? */

* Make sure tests check proper conditions

for (int i = 1; i != 100; i += 2) {
// do something here
}

/* will we ever get here? */

Lecture 8 - A

Object-Oriented Programming 29

Loops and Recursion

* Loops and Recursion Could be Used in
Conjunction with Each Other.

» Koch’s Snowflake is one example

Lecture 8 - A Object-Oriented Programming 30

10/22/2008

15

Recursion vs. Iteration

* Choice between simple recursion and
iteration is one of modeling
— recursion is often less efficient because of
more method calls (each activation record
takes up some of computer’s memory)

— recursion is more concise and more elegant for
tasks that are “naturally” self-similar
* like Towers of Hanoi!

Lecture 8 - A Object-Oriented Programming 31

Reading

Book Name: Object Oriented Programming in Java™
Author: Richard L.Halterman
Content: Chapter # 17 & 18

Lecture 8 - A Object-Oriented Programming 32

10/22/2008

16

Acknowledgements

* While preparing this course I have greatly
benefited from the material developed by the
following people:

— Andy Van Dam (Brown University)
— Mark Sheldon (Wellesley College)

— Robert Sedgewick and Kevin Wayne (Princeton
University)

— Mark Guzdial and Barbara Ericsson (Georgia Tech)
— Richard Halterman (Southern Adventist University)

Lecture 8 - A Object-Oriented Programming 33

10/22/2008

17

