
10/22/2008

1

Iteration

Lecture 8 - A

Object-Oriented Programming

Agenda
• While Loop

• Infinite Loops

• Block Statements in Loops

• While Loop for Input Validation

• Do-while Loop

• For Loop

• Sentinel Values

• Nested Loops

• Break Statement

• Continue Statement

• Deciding Which Loops to Use

• Boolean Flags

• Empty Intervals

• Common Loop Errors

• Recursion vs. Iteration

Lecture 8 - A Object-Oriented Programming 2

10/22/2008

2

Lecture 8 - A Object-Oriented Programming 3

while Loop

• Java provides three different looping structures.

• The while loop has the form:
while(condition){

statements;

}

• While the condition is true, the statements will

execute repeatedly.

• The while loop is a pretest loop, which means that

it will test the value of the condition prior to

executing the loop.

Lecture 8 - A Object-Oriented Programming 4

while Loop

• Care must be taken to set the condition to
false somewhere in the loop so the loop will
end.

• Loops that do not end are called infinite
loops.

• A while loop executes 0 or more times since
if the condition is false, the loop will not
execute.

10/22/2008

3

Lecture 8 - A Object-Oriented Programming 5

while loop Flowchart

statement(s)

true
boolean

expression?

false

Lecture 8 - A Object-Oriented Programming 6

Infinite Loops

• In order for a while loop to end, the condition
must become false.

{

int x = 20;

while(x > 0){

System.out.println(“x is greater than 0”);

}

}

• The variable x never gets decremented so it will
always be greater than 0.

10/22/2008

4

Lecture 8 - A Object-Oriented Programming 7

Infinite Loops

• In order for a while loop to end, the condition
must become false.

{

int x = 20;

while(x > 0){

System.out.println(“x is greater than 0”);

x--;

}

}

• The variable x never gets decremented so it will
always be greater than 0.

• Adding the x-- above fixes the problem.

Lecture 8 - A Object-Oriented Programming 8

Block Statements in Loops

• Although not required for single statement while

loops, convention holds that while loops always

use curly braces.

• Curly braces are required to enclose block

statement while loops. (like block if statements)

while(condition){

single or block statements;

}

10/22/2008

5

Lecture 8 - A Object-Oriented Programming 9

while Loop for Input

Validation
• Input validation is the process of ensuring that

user input is valid.
System.out.print("Enter a number in the "

+ "range of 1 through 100: ");

number = Keyboard.readInt();

// Validate the input.

while (number < 1 || number > 100)

{

System.out.println("That number is invalid.");

System.out.print("Enter a number in the "

+ "range of 1 through 100: ");

number = Keyboard.readInt();

}

Lecture 8 - A Object-Oriented Programming 10

The do-while Loop

• The do-while loop is a post-test loop, which
means it will execute the loop prior to
testing the condition.

• The do-while loop, more commonly called a
do loop, takes the form:

do{

statements

}while(condition);

10/22/2008

6

Lecture 8 - A Object-Oriented Programming 11

do-while Loop Flowchart

statement(s)

true
boolean

expression?

false

Lecture 8 - A Object-Oriented Programming 12

for Loop

• The for loop is a specialized form of the while loop,
meaning it is a pre-test loop.

• The for loop allows the programmer to initialize a
control variable, test a condition, and modify the
control variable all in one line of code.

• The for loop takes the form:
for(initialization; test; update)

{

loop statements;

}

10/22/2008

7

Lecture 8 - A Object-Oriented Programming 13

for Loop Flowchart

statement(s)
trueboolean

expression?

false

update

Lecture 8 - A Object-Oriented Programming 14

Sections of The for Loop

• The initialization section of the for loop
allows the loop to initialize its own control
variable.

• The test section of the for statement acts in
the same manner as the condition section of
a while loop.

• The update section of the for loop is the last
thing to execute at the end of each loop.

10/22/2008

8

Lecture 8 - A Object-Oriented Programming 15

for Loop Initialization

• The initialization section of a for loop is optional;

however, it is usually provided.

• Typically, for loops initialize a counting variable

that will be tested by the test section of the loop

and updated by the update section.

• The initialization section can initialize multiple

variables.

• Variables declared in this section have scope only

for the for loop.

Lecture 8 - A Object-Oriented Programming 16

Update Expression

• The update expression is usually used to

increment or decrement the counting variable(s)

declared in the initialization section of the for

loop.

• The update section of the loop executes last in the

loop.

• The update section may update multiple variables.

• Each variable updated is executed as if it were on

a line by itself.

10/22/2008

9

Lecture 8 - A Object-Oriented Programming 17

Modifying The Control Variable

• It is bad programming style to update the

control variable of a for loop within the

body of the loop.

• The update section should be used to update

the control variable.

• Updating the control variable in the for loop

body leads to hard to maintain code and

difficult debugging.

Lecture 8 - A Object-Oriented Programming 18

Multiple Initializations and

Updates

• The for loop may initialize and update

multiple variables.
for(int i = 5, int j = 0; i < 10 || j < 20; i++, j+=2){

loop statements;

}

• Note that the only parts of a for loop that

are mandatory are the semicolons.
for(;;){

loop statements;

}//infinite loop.

• If left out, the test section defaults to true.

10/22/2008

10

Lecture 8 - A Object-Oriented Programming 19

Sentinel Values

• Sometimes (usually) the end point of input data is
not known.

• A sentinel value can be used to notify the program
to stop acquiring input.

• If it is a user input, the user could be prompted to
input data that is not normally in the input data
range (i.e. –1 where normal input would be
positive.)

• Programs that get file input typically use the end-
of-file marker to stop acquiring input data.

Lecture 8 - A Object-Oriented Programming 20

Nested Loops

• Like if statements, loops can be nested.

• If a loop is nested, the inner loop will execute all
of its iterations for each time the outer loop
executes once.
for(int i = 0; i < 10; i++)

for(int j = 0; j < 10; j++)

loop statements;

• The loop statements in this example will execute
100 times.

10/22/2008

11

Lecture 8 - A Object-Oriented Programming 21

break Statement

• The break statement can be used to

abnormally terminate a loop.

• The use of the break statement in loops

bypasses the normal mechanisms and makes

the code hard to read and maintain.

• It is considered bad form to use the break

statement in this manner.

Lecture 8 - A Object-Oriented Programming 22

continue Statement

• The continue statement will cause the
currently executing iteration of a loop to
terminate and the next iteration will begin.

• The continue statement will cause the
evaluation of the condition in while and for
loops.

• Like the break statement, the continue
statement should be avoided because it
makes the code hard to read and debug.

10/22/2008

12

Lecture 8 - A Object-Oriented Programming 23

Deciding Which Loops to Use
• The while loop:

– Pretest loop

– Use it where you do not want the statements to execute
if the condition is false in the beginning.

• The do-while loop:

– Post-test loop

– Use it where you want the statements to execute at least
one time.

• The for loop:

– Pretest loop

– Use it where there is some type of counting variable
that can be evaluated.

Lecture 8 - A Object-Oriented Programming 24

boolean Flags

• A boolean flag is a boolean variable that denotes a condition (e.g., done,
working, available)

– set in one place, tested in another

• Boolean flags can also be used as the loop condition

• Example (implementing a for loop, using while):

boolean done = false;

int i = 0;

while (!done) {

i++;

if (i == 5)

done = true;

}

• Notice that boolean flag is set within loop
– in previous slides all checking was done through delegation, here we do it ourselves

10/22/2008

13

Lecture 8 - A Object-Oriented Programming 25

Empty Intervals

public int sum() {

int temp_sum = 0;

for (int i = 1; i < 1; i++)

temp_sum += i;

return temp_sum;

}

• Answer: Body of loop is not executed

• Why?
– boolean is false for initial value of counter

Lecture 8 - A Object-Oriented Programming 26

Empty Intervals

• Correct example:

/* This method sums all numbers from 1 up to

and including the number specified */

public int sum(int number) {

int temp_sum = 0;

for (int i = 1; i <= number; i++)

temp_sum += i;

return temp_sum;

}

10/22/2008

14

Lecture 8 - A Object-Oriented Programming 27

Off by One Errors

• Occur when loop executes one too many or one
too few times

• Example: Add even integers from 2 to number,
inclusive
...

count = 2;

result = 0;

while (count < number) {

result += count;

count += 2;

}

Lecture 8 - A Object-Oriented Programming 28

Off by One Errors

• Produces incorrect result if number is assigned

an even value. Values from 2 to number-2 will

be added (i.e., number excluded)

• Should be:
while (count <= number) {

...

}

• Now, value of number is included in summation

10/22/2008

15

Lecture 8 - A Object-Oriented Programming 29

Other Loop Errors
• Make sure test variables have proper values before loop is

entered
...

product = 0;

do {

product *= 2;

} while (product < 100);

/* what will happen here? */

• Make sure tests check proper conditions
...

for (int i = 1; i != 100; i += 2) {

// do something here

}

/* will we ever get here? */

Lecture 8 - A Object-Oriented Programming 30

Loops and Recursion

• Loops and Recursion Could be Used in

Conjunction with Each Other.

• Koch’s Snowflake is one example

10/22/2008

16

Lecture 8 - A Object-Oriented Programming 31

Recursion vs. Iteration

• Choice between simple recursion and

iteration is one of modeling

– recursion is often less efficient because of

more method calls (each activation record

takes up some of computer’s memory)

– recursion is more concise and more elegant for

tasks that are “naturally” self-similar

• like Towers of Hanoi!

Reading

Book Name: Object Oriented Programming in JavaTM

Author: Richard L.Halterman

Content: Chapter # 17 & 18

Lecture 8 - A Object-Oriented Programming 32

10/22/2008

17

Acknowledgements

• While preparing this course I have greatly

benefited from the material developed by the

following people:

– Andy Van Dam (Brown University)

– Mark Sheldon (Wellesley College)

– Robert Sedgewick and Kevin Wayne (Princeton

University)

– Mark Guzdial and Barbara Ericsson (Georgia Tech)

– Richard Halterman (Southern Adventist University)

Lecture 8 - A 33Object-Oriented Programming

